Chemical composition and antimicrobial effect of aqueous and ethanolic extracts of stinging nettle (Urtica dioica L.)

Kőszegi K.a, Békássy-Molnár E.a, Stefanovits-Bányai É.b, Szabó P.c, Végvári Gy.d, Maráz A.e

aDepartment of Food Engineering, bDepartment of Applied Chemistry, cDepartment of Microbiology and Biotechnology, Szent István University, Budapest
dHungarian Academy of Sciences, Research Centre for Natural Sciences, Instrumentation Center, Budapest
eFaculty of Agricultural and Environmental Sciences, Kaposvár University, Kaposvár

Stinging nettle (Urtica dioica L.) is a widespread herbaceous plant all around the world and used for curing different types of diseases for centuries.

Our aim was to investigate the extractable chemical composition of different organs of stinging nettle and determine the antimicrobial affects against certain human pathogenic bacteria and yeasts. Chemical analysis of aqueous and ethanolic extracts was performed by measuring the total polyphenol content and antioxidant capacity of the extracts and separation of the extracted compounds by HPLC. Antimicrobial activity was determined by well-diffusion method.

Our results indicate that aqueous extracts of leaves had about twice as much polyphenol content and antioxidant capacity than the roots, which correlated well with the H-donor activity of the samples. HPLC analysis revealed high rutin contents of leaves and less in roots, together with other metabolites in much lower concentrations. Antimicrobial effect of aqueous extracts was more pronounced against bacteria, than yeasts. Growth of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes was inhibited, while antifungal effect was detected only in case of Candida glabrata.